df = geopandas.read_parquet("s3://weave.energy/beta/smart-meter")
df = geopandas.read_parquet( "s3://weave.energy/beta/smart-meter", filters=[("data_collection_log_timestamp", "==", pd.Timestamp("2024-07-14T20:00:00Z"))]) df = df[df["total_consumption_active_import"] < 20000] df.plot(column="total_consumption_active_import" ... )
df = geopandas.read_parquet( "s3://weave.energy/beta/smart-meter", bbox=(-1.5,50.85,-1.3,50.95), filters=[("data_collection_log_timestamp", "==", pd.Timestamp("2024-07-14 20:00Z"))]) df.plot(column="total_consumption_active_import" ... )
df = geopandas.read_parquet( "s3://weave.energy/beta/smart-meter", filters=[ ("dno_alias", "==", "SSEN"), ("secondary_substation_unique_id", "==", "6400603160") ]) timeseries = df.pivot( index="data_collection_log_timestamp", columns="lv_feeder_unique_id", values="total_consumption_active_import") timeseries.resample("d").sum().plot( ... )